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Abstract. We prove the following general result for Laguerre polynomials.
For all x, α ∈ C

i∑
k=j

ksL
(−α−i−1)
i−k (−x)L

(α+j)

k−j (x) = δi,2s+j (−x)s i, j, s ∈ {0, 1, 2, . . .}

provided thati > 2s + j.

1. Known results

The Laguerre polynomials{L(α)
n (x)}∞n=0 are defined by

L(α)
n (x) = 1

n!

n∑
k=0

(−n)k(α + k + 1)n−k

xk

k!
n ∈ {0, 1, 2, . . .}

for all complex α and x. For n ∈ {−1, −2, −3, . . .} we defineL(α)
n (x) = 0. They are

polynomials inx and in α. For α real andα > −1 they are orthogonal on the interval
[0, ∞) with respect to the weight functionxαe−x . We mention some well known formulae
for these polynomials (see [1]). If D= d/dx denotes the differential operator then

DkL(α)
n (x) = (−1)kL

(α+k)
n−k (x) k 6 n, k, n ∈ {0, 1, 2, . . .} (1)

and

[−xD2 − (α + 1 − x)D]L(α)
n (x) = nL(α)

n (x) n ∈ {0, 1, 2, . . .}. (2)

From the generating function
∞∑

n=0

L(α)
n (x)tn = (1 − t)−α−1 exp

(
xt

t − 1

)
it is easy to obtain (see [2, 3])

∞∑
k=0

L
(−α−i−1)
k (−x)tk

∞∑
m=0

L(α+j)
m (x)tm = (1 − t)i−j−1

which leads to
i∑

k=j

L
(−α−i−1)
i−k (−x)L

(α+j)

k−j (x) = δi,j j 6 i, i, j ∈ {0, 1, 2, . . .}. (3)

This gives the general result indicated in the abstract in the cases = 0.
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2. Derivation of the formula

Let J (α)(x; j, k) be the linear differential operator of the form

J (α)(x; j, k) =
∞∑
i=1

j
(α)
i (x; j, k)Di

such that for a certain valuej ∈ {0, 1, 2, . . .}, k ∈ {1, 2, 3, . . .}, j 6 k

∞∑
i=1

j
(α)
i (x; j, k)DiL(α)

n (x) = δn,kL
(α+j)

n−j (x) for all n ∈ {1, 2, 3, . . .}.

The coefficientsj (α)
i (x; j, k) are uniquely determined and can be calculated by (3) (see [3,

lemma 5])

j
(α)
i (x; j, k) = (−1)i

i∑
n=j

L
(−α−i−1)
i−n (−x)δn,kL

(α+j)

n−j (x)

= (−1)iL
(−α−i−1)
i−k (−x)L

(α+j)

k−j (x).

For s ∈ {1, 2, 3, . . .} the operator

H(α)(x; j, s) = (−1)j
∞∑

k=max{i,j}
ksJ (α)(x; j, k)

has the property that for alln ∈ {0, 1, 2, . . .}
H(α)(x; j, s)L(α)

n (x) = (−1)jnsL
(α+j)

n−j (x).

However, by (1) and (2), it is easy to see that for alln, j ∈ {0, 1, 2, . . .} ands ∈ {1, 2, 3, . . .}
Dj [−xD2 − (α + 1 − x)D]sL(α)

n (x) = (−1)jnsL
(α+j)

n−j (x).

It follows that

Dj [−xD2 − (α + 1 − x)D]s =
∞∑
i=1

(−1)i+j

[ ∞∑
k=max{i,j}

ksL
(−α−i−1)
i−k (−x)L

(α+j)

k−j (x)

]
Di (4)

which implies the desired result fors ∈ {1, 2, 3, . . .}.

3. Application

In some recent papers on differential operators for generalizations of Laguerre polynomials
[2, 3] the coefficients of the differential operators contain expressions of the form

i∑
k=j

(
k + α + 1

k

)
L

(−α−i−1)
i−k (−x)L

(α+j)

k−j (x).

After tedious computations they turn out to vanish for sufficiently large values ofi in the
case thatα is an integer greater than−1, proving that in that case the operators are of finite
order. Now this is a direct consequence of the general result obtained.

The author likes to thank Dr H A W M Kneppers for helping him to check formula (4) by
means of Maple and Drs J Koekoek for valuable comments.
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