A new result for Laguerre polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 L277

(http://iopscience.iop.org/0305-4470/29/11/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:52

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A new result for Laguerre polynomials

H Bavinck
Delft University of Technology, Faculty of Technical Mathematics and Informatics, PO Box 5031, 2600 GA Delft, The Netherlands

Received 4 March 1996

Abstract. We prove the following general result for Laguerre polynomials.
For all $x, \alpha \in \mathbb{C}$
$\sum_{k=j}^{i} k^{s} L_{i-k}^{(-\alpha-i-1)}(-x) L_{k-j}^{(\alpha+j)}(x)=\delta_{i, 2 s+j}(-x)^{s} \quad i, j, s \in\{0,1,2, \ldots\}$
provided that $i \geqslant 2 s+j$.

1. Known results

The Laguerre polynomials $\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ are defined by

$$
L_{n}^{(\alpha)}(x)=\frac{1}{n!} \sum_{k=0}^{n}(-n)_{k}(\alpha+k+1)_{n-k} \frac{x^{k}}{k!} \quad n \in\{0,1,2, \ldots\}
$$

for all complex α and x. For $n \in\{-1,-2,-3, \ldots\}$ we define $L_{n}^{(\alpha)}(x)=0$. They are polynomials in x and in α. For α real and $\alpha>-1$ they are orthogonal on the interval $[0, \infty)$ with respect to the weight function $x^{\alpha} \mathrm{e}^{-x}$. We mention some well known formulae for these polynomials (see [1]). If $\mathrm{D}=\mathrm{d} / \mathrm{d} x$ denotes the differential operator then

$$
\begin{equation*}
\mathrm{D}^{k} L_{n}^{(\alpha)}(x)=(-1)^{k} L_{n-k}^{(\alpha+k)}(x) \quad k \leqslant n, k, n \in\{0,1,2, \ldots\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[-x \mathrm{D}^{2}-(\alpha+1-x) \mathrm{D}\right] L_{n}^{(\alpha)}(x)=n L_{n}^{(\alpha)}(x) \quad n \in\{0,1,2, \ldots\} \tag{2}
\end{equation*}
$$

From the generating function

$$
\sum_{n=0}^{\infty} L_{n}^{(\alpha)}(x) t^{n}=(1-t)^{-\alpha-1} \exp \left(\frac{x t}{t-1}\right)
$$

it is easy to obtain (see $[2,3]$)

$$
\sum_{k=0}^{\infty} L_{k}^{(-\alpha-i-1)}(-x) t^{k} \sum_{m=0}^{\infty} L_{m}^{(\alpha+j)}(x) t^{m}=(1-t)^{i-j-1}
$$

which leads to

$$
\begin{equation*}
\sum_{k=j}^{i} L_{i-k}^{(-\alpha-i-1)}(-x) L_{k-j}^{(\alpha+j)}(x)=\delta_{i, j} \quad j \leqslant i, i, j \in\{0,1,2, \ldots\} \tag{3}
\end{equation*}
$$

This gives the general result indicated in the abstract in the case $s=0$.

2. Derivation of the formula

Let $J^{(\alpha)}(x ; j, k)$ be the linear differential operator of the form

$$
J^{(\alpha)}(x ; j, k)=\sum_{i=1}^{\infty} j_{i}^{(\alpha)}(x ; j, k) \mathrm{D}^{i}
$$

such that for a certain value $j \in\{0,1,2, \ldots\}, k \in\{1,2,3, \ldots\}, j \leqslant k$
$\sum_{i=1}^{\infty} j_{i}^{(\alpha)}(x ; j, k) \mathrm{D}^{i} L_{n}^{(\alpha)}(x)=\delta_{n, k} L_{n-j}^{(\alpha+j)}(x) \quad$ for all $n \in\{1,2,3, \ldots\}$.
The coefficients $j_{i}^{(\alpha)}(x ; j, k)$ are uniquely determined and can be calculated by (3) (see [3, lemma 5])

$$
\begin{aligned}
j_{i}^{(\alpha)}(x ; j, k) & =(-1)^{i} \sum_{n=j}^{i} L_{i-n}^{(-\alpha-i-1)}(-x) \delta_{n, k} L_{n-j}^{(\alpha+j)}(x) \\
& =(-1)^{i} L_{i-k}^{(-\alpha-i-1)}(-x) L_{k-j}^{(\alpha+j)}(x)
\end{aligned}
$$

For $s \in\{1,2,3, \ldots\}$ the operator

$$
H^{(\alpha)}(x ; j, s)=(-1)^{j} \sum_{k=\max \{i, j\}}^{\infty} k^{s} J^{(\alpha)}(x ; j, k)
$$

has the property that for all $n \in\{0,1,2, \ldots\}$

$$
H^{(\alpha)}(x ; j, s) L_{n}^{(\alpha)}(x)=(-1)^{j} n^{s} L_{n-j}^{(\alpha+j)}(x)
$$

However, by (1) and (2), it is easy to see that for all $n, j \in\{0,1,2, \ldots\}$ and $s \in\{1,2,3, \ldots\}$

$$
\mathrm{D}^{j}\left[-x \mathrm{D}^{2}-(\alpha+1-x) \mathrm{D}\right]^{s} L_{n}^{(\alpha)}(x)=(-1)^{j} n^{s} L_{n-j}^{(\alpha+j)}(x)
$$

It follows that
$\mathrm{D}^{j}\left[-x \mathrm{D}^{2}-(\alpha+1-x) \mathrm{D}\right]^{s}=\sum_{i=1}^{\infty}(-1)^{i+j}\left[\sum_{k=\max \{i, j\}}^{\infty} k^{s} L_{i-k}^{(-\alpha-i-1)}(-x) L_{k-j}^{(\alpha+j)}(x)\right] \mathrm{D}^{i}$
which implies the desired result for $s \in\{1,2,3, \ldots\}$.

3. Application

In some recent papers on differential operators for generalizations of Laguerre polynomials $[2,3]$ the coefficients of the differential operators contain expressions of the form

$$
\sum_{k=j}^{i}\binom{k+\alpha+1}{k} L_{i-k}^{(-\alpha-i-1)}(-x) L_{k-j}^{(\alpha+j)}(x)
$$

After tedious computations they turn out to vanish for sufficiently large values of i in the case that α is an integer greater than -1 , proving that in that case the operators are of finite order. Now this is a direct consequence of the general result obtained.

The author likes to thank Dr H A W M Kneppers for helping him to check formula (4) by means of Maple and Drs J Koekoek for valuable comments.

References

[1] Szegő G 1975 Orthogonal Polynomials (AMS Colloq. Publ. 23) 4th edn (Providence, RI: American Mathematical Society)
[2] Bavinck H 1995 A direct approach to Koekoek's differential equation for generalized Laguerre polynomials Acta Math. Hungar. 66 247-53
[3] Koekoek J, Koekoek R and Bavinck H On differential equations for Sobolev-type Laguerre polynomials TWI Report 95-79 submitted

